Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Anal Methods ; 16(10): 1538-1545, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38404181

RESUMEN

Okadaic acid (OA) is one of the main virulence factors of diarrheal shellfish toxins (DSP). It is of great significance to detect OA with an accurate, specific and cost-effective technique in the fields of seafood safety and water quality control. In this work, an electrochemical aptasensor with reverse amplification was developed for the sensitive detection of OA. A two-dimensional graphite-phase nanomaterial (carbon nitride) modified with an anti-OA aptamer and thionine (Th) was immobilized onto the surface of the electrochemical electrode as the sensitive element to capture target OA molecules. ssDNA-modified carbon nitride was used as the reverse amplification element by hybridizing with non-OA linked aptamers. The preparation of the electrochemical aptasensor was well characterized by Scanning Electron Microscopy (SEM), zeta potential detection, UV-Vis absorption, Brunner-Emmet-Teller (BET) measurements, and electrochemical measurements. The quantitative assessment of OA was achieved by differential pulse voltammetry (DPV). Experimental results indicated that this aptasensor showed a concentration-dependent response to OA with a good detection performance including in terms of selectivity, repeatability, reproducibility, and stability. It exhibited 100-fold selectivity between OA and other toxins including dinophysistoxins (DTX), pectenotoxins (PTX), and yessotoxins (YTX). In addition, it showed a much wider quantification range, which is 10-13 M-10-10 M (0.080-80.50 pg mL-1). The detection limit was as low as 10-13 M (0.080 pg mL-1). The aptasensor also successfully achieved significant practicality on real shellfish samples contaminated by OA. All these results demonstrated that the reverse amplification strategy for marine toxin detection may provide a label-free and rapid detection approach for portable applications in the fields of environmental monitoring and food security.


Asunto(s)
Aptámeros de Nucleótidos , Nitrilos , Ácido Ocadaico , Reproducibilidad de los Resultados , Aptámeros de Nucleótidos/química , Mariscos , Alimentos Marinos/análisis
2.
Sci Total Environ ; 921: 171093, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38387589

RESUMEN

Ecological compensation is an effective means to reconcile the imbalance of eco-social development between regions and promote enthusiasm for ecological environmental protection. There is some conformity between the theory of ecosystem service flow and ecological compensation, which provides new technical support for the formulation of ecological compensation policy. This study took the Qinghai-Tibet Plateau as the research area, adopted the breaking point model to obtain the spatial characteristics of carbon sequestration flow, and formulated a multilevel ecological compensation policy with Tibet as the design object. The results showed that most of the Qinghai-Tibet Plateau has a carbon sequestration surplus; the central and eastern Qinghai-Tibet Plateau, western Sichuan are successively carbon sequestration supply areas; the Chengdu Plain and Xinjiang were listed as carbon sequestration benefit areas; and the carbon sequestration tended to flow more closely between supply and benefit areas in proximity to each other. Nyingchi, Chamdo, Naqu and Shannan in Tibet need to receive a total ecological compensation of 393.21 million USD, of which 93.71 % is from the national level, 6.02 % is from carbon sequestration benefit areas in other provinces; furthermore, Lhasa and Shigatse in Tibet need to provide the remaining ecological compensation. This study offers innovations for the formulation of ecological compensation policies and provide a new theory for ecological environment management.

3.
J Environ Manage ; 353: 120193, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38301474

RESUMEN

Wetlands, known as the "kidney of the earth", are an important component of global ecosystems. However, they have been changed under multiple stresses in recent decades, which is especially true in the Yellow River Delta. This study examined the spatiotemporal change characteristics of wetlands in the Yellow River Delta from 1980 to 2020 and predicted detailed wetland changes from 2020 to 2030 with the patch-generating land use simulation (PLUS) model under four scenarios, namely, the natural development scenario (NDS), the farmland protection scenario (FPS), the wetland protection scenario (WPS) and the harmonious development scenario (HDS). The results showed that wetlands increased 709.29 km2 from 1980 to 2020 overall, and the wetland types in the Yellow River Delta changed divergently. Over the past four decades, the tidal flats have decreased, whereas the reservoirs and ponds have increased. The gravity center movement of wetlands differed among the wetland types, with artificial wetlands moving to the northwest and natural wetlands moving to the south. The movement distance of the gravity center demonstrated apparent phase characteristics, and an abrupt change occurred from 2005 to 2010. The PLUS model was satisfactory, with an overall accuracy (OA) value greater than 83.48 % and an figure of merit (FOM) value greater than 0.1164. From 2020 to 2030, paddy fields and tidal flats decreased, whereas natural water, marshes and reservoirs and ponds increased under the four scenarios. The WPS was a relatively ideal scenario for wetlands, and the HDS was an alternative scenario for wetland restoration and food production. In the future, more attention should be paid to restoring natural wetlands to prevent further degradation in the Yellow River Delta. This study provides insights into new understandings of historical and future changes in wetlands and may have implications for wetland ecosystem protection and sustainable development.


Asunto(s)
Ecosistema , Humedales , Ríos , China , Desarrollo Sostenible , Conservación de los Recursos Naturales
4.
J Am Chem Soc ; 145(51): 28111-28123, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38091498

RESUMEN

The compositional tunability of 2D metal halide perovskites enables exploration of diverse semiconducting materials with different structural features. However, rationally tuning the 2D perovskite structures to target physical properties for specific applications remains challenging, especially for lead-free perovskites. Here, we study the effect of the interplay of the B-site (Ge, Sn, and Pb), A-site (cesium, methylammonium, and formamidinium), and spacer cations on the structure and optical properties of a new series of 2D Ruddlesden-Popper perovskites using the previously unreported spacer cation 4-bromo-2-fluorobenzylammonium (4Br2FBZ). We report eight new crystal structures and study the consequence of varying the B-site (Pb, Sn, Ge) and dimension (n = 1, 2, vs 3D). Dimension strongly influences local distortion and structural symmetry, and the increased octahedral tilting and lone pair effects in Ge perovskites lead to a polar n = 2 perovskite that exhibits second harmonic generation, (4Br2FBZ)2(Cs)Ge2I7. In contrast, the analogous Sn and Pb perovskites remain centrosymmetric, but the B-site metal influences the photoluminescence properties. The Pb perovskites exhibit broad, defect-mediated emission at low temperature, whereas the Sn perovskites show purely excitonic emission over the entire temperature range, but the carrier recombination dynamics depend on dimensionality and dark excitonic states. Wholistic understanding of these differences that arise based on cations and dimensionality can guide the rational materials design of 2D perovskites for targeting physical properties for optoelectronic applications based on the interplay of cations and the connectivity of the inorganic framework.

5.
Small ; : e2308264, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38059787

RESUMEN

Conductive metal-organic frameworks (MOFs) are a type of porous material. It consists of metal ions coordinated with highly conjugated organic ligands. The high density of carriers and orbital overlap contribute to the amazing conductivity. Additionally, conductive MOFs inherit the advantages of large specific surface area, structural diversity, and adjustable pore size from MOFs. These excellent properties have attracted many researchers to explore controllable synthesis and electrochemical applications over the past decade. This work provides an overview of the recent advances in the synthesis strategies of conductive MOFs and highlights their applications in electrocatalysis, supercapacitors, sensors, and batteries. Finally, the challenges faced by the synthesis and application of conductive MOFs are discussed, as well as the views on promising solutions for them are presented.

6.
Sensors (Basel) ; 23(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139539

RESUMEN

Evaluating the levels of the biomarker carbohydrate antigen 19-9 (CA19-9) is crucial in early cancer diagnosis and prognosis assessment. In this study, an antifouling electrochemical immunosensor was developed for the label-free detection of CA19-9, in which bovine serum albumin (BSA) and graphene were cross-linked with the aid of glutaraldehyde to form a 3D conductive porous network on the surface of an electrode. The electrochemical immunosensor was characterized through the use of transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscope (AFM), UV spectroscopy, and electrochemical methods. The level of CA19-9 was determined through the use of label-free electrochemical impedance spectroscopy (EIS) measurements. The electron transfer at the interface of the electrode was well preserved in human serum samples, demonstrating that this electrochemical immunosensor has excellent antifouling performance. CA19-9 could be detected in a wide range from 13.5 U/mL to 1000 U/mL, with a detection limit of 13.5 U/mL in human serum samples. This immunosensor also exhibited good selectivity and stability. The detection results of this immunosensor were further validated and compared using an enzyme-linked immunosorbent assay (ELISA). All the results confirmed that this immunosensor has a good sensing performance in terms of CA19-9, suggesting its promising application prospects in clinical applications.


Asunto(s)
Incrustaciones Biológicas , Técnicas Biosensibles , Grafito , Humanos , Antígeno CA-19-9 , Albúmina Sérica Bovina , Inmunoensayo/métodos , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Límite de Detección , Oro/química
7.
Adv Sci (Weinh) ; 10(24): e2302215, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37337394

RESUMEN

Sulfur cathodes in Li-S batteries suffer significant volumetric expansion and lack of catalytic activity for polysulfide conversion. In this study, a confined self-reduction synthetic route is developed for preparing nanocomposites using diverse metal ions (Mn2+ , Co2+ , Ni2+ , and Zn2+ )-introduced Al-MIL-96 as precursors. The Ni2+ -introduced Al-MIL-96-derived nanocomposite contains a "hardness unit", amorphous aluminum oxide framework, to restrain the volumetric expansion, and a "softness unit", Ni nanocrystals, to improve the catalytic activity. The oxygen-potential diagram theoretically explains why Ni2+ is preferentially reduced. Postmortem microstructure characterization confirms the suppressive volume expansion. The in situ ultraviolet-visible measurements are performed to probe the catalytic activity of polysulfide conversion. This study provides a new perspective for designing nanocomposites with "hardness units" and "softness units" as sulfur or other catalyst hosts.

8.
Biosensors (Basel) ; 13(3)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36979526

RESUMEN

Nanozymes are nanomaterials with enzyme-like activity, possessing the unique properties of nanomaterials and natural enzyme-like catalytic functions. Nanozymes are catalytically active, stable, tunable, recyclable, and versatile. Therefore, increasing attention has been paid in the fields of environmental science and life sciences. In this review, we focused on the most recent applications of nanozymes for environmental monitoring, environmental management, and environmental protection. We firstly introduce the tuning catalytic activity of nanozymes according to some crucial factors such as size and shape, composition and doping, and surface coating. Then, the application of nanozymes in environmental fields are introduced in detail. Nanozymes can not only be used to detect inorganic ions, molecules, organics, and foodborne pathogenic bacteria but are also involved in the degradation of phenolic compounds, dyes, and antibiotics. The capability of nanozymes was also reported for assisting air purification, constructing biofuel cells, and application in marine antibacterial fouling removal. Finally, the current challenges and future trends of nanozymes toward environmental fields are proposed and discussed.


Asunto(s)
Nanoestructuras , Catálisis , Antibacterianos , Monitoreo del Ambiente
9.
Ying Yong Sheng Tai Xue Bao ; 34(2): 547-554, 2023 Feb.
Artículo en Chino | MEDLINE | ID: mdl-36803733

RESUMEN

Ecological technology is the core of ecological environment governance and restoration in ecologically vulnerable regions. A reasonable classification method is the basis for induction and summary of ecological techno-logy, which is of great significance to classify and solve ecological environmental problems and evaluate the effects of ecological technology implementation. However, there is still no standard method for the classification of ecological technology. From the perspective of ecological technology classification, we summarized the concept of eco-technology and related classification methods, in view of current situation and deficiency of ecological technology related classification, we put forward a system suitable for defining and classifying ecological technology in ecologically vulnerable regions of China, and analyzed the practicality and application prospect. Our review would provide reference for the management and promotion of ecological technology classification.


Asunto(s)
Ambiente , Tecnología , China , Conservación de los Recursos Naturales/métodos , Ecosistema
10.
Biosensors (Basel) ; 12(10)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36290995

RESUMEN

The biomimetic olfactory and gustatory biosensing devices have broad applications in many fields, such as industry, security, and biomedicine. The development of these biosensors was inspired by the organization of biological olfactory and gustatory systems. In this review, we summarized the most recent advances in the development of detection strategies for chemical sensing based on olfactory and gustatory biomimetic biosensors. First, sensing mechanisms and principles of olfaction and gustation are briefly introduced. Then, different biomimetic sensing detection strategies are outlined based on different sensing devices functionalized with various molecular and cellular components originating from natural olfactory and gustatory systems. Thereafter, various biomimetic olfactory and gustatory biosensors are introduced in detail by classifying and summarizing the detection strategies based on different sensing devices. Finally, the future directions and challenges of biomimetic biosensing development are proposed and discussed.


Asunto(s)
Técnicas Biosensibles , Olfato , Biomimética , Gusto
11.
Dalton Trans ; 51(37): 14317-14322, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36069316

RESUMEN

Bacterial cellulose (BC), produced by bacteria and fungi, is a promising material in the biomedical field. However, non-antibacterial activity limits its broad applications. Herein, antibacterial composites (BC/ZIF-8-iodine) were prepared by loading iodine into zeolitic imidazolate framework-8 (ZIF-8) modified BC (BC/ZIF-8). BC/ZIF-8-iodine was well characterized by SEM, XRD, FTIR, XPS, Raman and contact angle analyses. The increase of ZIF-8 content augmented the loading capacity of iodine in BC/ZIF-8-iodine. Meanwhile, the adsorbed iodine can be released from BC/ZIF-8-iodine composites, following the Higuchi equation. A reduced sublimation of iodine was observed in BC/ZIF-8-iodine composites, indicating their good iodine preservation ability. BC/ZIF-8-iodine composites exhibited strong antibacterial activity towards Escherichia coli, Staphylococcus aureus and Candida albicans. XPS and Raman analyses indicated that the adsorbed iodine of BC/ZIF-8-iodine composites was in the form of I3-. The expected iodine loading, release and preservation behaviors of BC/ZIF-8-iodine composites ensure their antibacterial performance and suggest potential clinical applications.


Asunto(s)
Yodo , Zeolitas , Antibacterianos/farmacología , Bacterias , Celulosa/farmacología , Escherichia coli , Yoduros , Yodo/farmacología , Zeolitas/farmacología
12.
Front Chem ; 10: 865006, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35978860

RESUMEN

Olfactory gamma oscillations (40-100 Hz) are generated spontaneously in animals and represent the activity of local olfactory bulb (OB) networks, which play important roles in cognitive mechanisms. In addition, high-frequency oscillations (HFO, 130-180 Hz) have attracted widespread attention and are novel neuronal oscillations with a frequency range closer to high gamma oscillations (60-100 Hz, HGOs). Both HGOs and HFOs are distinctly regulated by θ rhythm in the hippocampus. To understand their mediation mechanisms in the OB, we investigated whether local field potential (LFP) oscillations including HGOs and HFOs and even their coupling with theta rhythm are modified by odor stimulation in both freely moving and anesthetized rats. Therefore, we combined electrophysiological technology and cross-frequency coupling analysis approaches to determine the difference in the odor-modulated LFP oscillations between awake and anesthetized rats. The obtained results indicate that LFP oscillations including HGOs and HFOs were differently modified by odor stimulation in animals of both states. However, θ-HGO and θ-HFO coupling were modified in only awake animals. It is suggested that these oscillations and their interactions with theta oscillations may play crucial roles in olfactory network activity. This could pave the way for further understanding the underlying mechanisms of oscillations in OB neurons towards odor sensation.

13.
Micromachines (Basel) ; 13(8)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36014238

RESUMEN

A piezoelectric micromachined ultrasonic transducer (PMUT) is a microelectromechanical system (MEMS) device that can transmit and receive ultrasonic waves. Given its advantages of high-frequency ultrasound with good directionality and high resolution, PMUT can be used in application scenarios with low power supply, such as fingerprint recognition, nondestructive testing, and medical diagnosis. Here, a PMUT based on an aluminum nitride thin-film material is designed and fabricated. First, the eigenfrequencies of the PMUT are studied with multiphysics coupling simulation software, and the relationship between eigenfrequencies and vibration layer parameters is determined. The transmission performance of the PMUT is obtained via simulation. The PMUT device is fabricated in accordance with the designed simple MEMS processing process. The topography of the PMUT vibration layer is determined via scanning electron microscopy, and the resonant frequency of the PMUT device is 7.43 MHz. The electromechanical coupling coefficient is 2.21% via an LCR tester.

14.
Front Plant Sci ; 13: 914176, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35800613

RESUMEN

Forests are among the most important N pools of all terrestrial ecosystems. Elevated atmospheric N deposition in recent decades has led to increased interest in the influences of N application on forest N cycles. However, accurate assessments of N storage in forest ecosystems remain elusive. We used a 14-year experiment of a Chinese fir [Cunninghamia lanceolata (Lamb.) Hook] plantation to explore how long-term N fertilization affected N storage and recovery rates. Our study plots were located in a field that had been continuously fertilized over 14 years (2004-2017) with urea at rates of 0 (N0, control), 60 (N60, low-N), 120 (N120, medium-N), and 240 (N240, high-N) kg N hm-2a-1. Data were collected that included N content and biomass in the understory, litter, and various plant organs (i.e., leaves, branches, stems, roots, and bark), as well as soil N content and density at different depths. Results showed that the total ecosystem N storage in the N-fertilized plots was 1.1-1.4 times higher than that in the control plots. About 12.36% of the total ecosystem N was stored in vegetation (plant organs, litter, and understory) and 87.64% was stored in soil (0-60 cm). Plant organs, litter, and soil had higher N storage than the understory layer. Significantly higher plant N uptake was found in the medium-N (1.2 times) and high-N (1.4 times) treatments relative to the control. The N recovery rate of the understory layer in the N-fertilized treatments was negative and less than that in the control. Application of long-term N fertilizer to this stand led to a low N recovery rate (average 11.39%) and high loss of N (average 91.86%), which indicate low N use efficiency in the Chinese fir plantation ecosystem. Our findings further clarify the distribution of N in an important terrestrial ecosystem and improve our understanding of regional N cycles.

15.
J Phys Chem Lett ; 13(30): 6944-6955, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35876494

RESUMEN

In this work, we present the ion migration of CsPbIBr2 under illumination and impede it by incorporating the large cations of guanidinium (GA). A series of "probe-set-probe" operations are applied to assess the photoluminescence (PL) behavior spectrally and spatially, which is correlated to the ion migration-induced phase separation, of CsPbIBr2 and GAxCs1-xPbIBr2 perovskites. The local lattice distortion introduced by GA could reduce the strain gradient in GAxCs1-xPbIBr2 to inhibit the ion migration, leading to a stable PL spectrum and enhanced device stability under light stimulation. A solar cell with an optimized stoichiometric composition of GA0.1Cs0.9PbIBr2 delivers comparable photovoltaic performance and improved stability compared to those of CsPbIBr2-based perovskite solar cells, retaining 80% of its initial power conversion efficiency after being continuously bathed in light for 8 h under ambient conditions without encapsulation, while the CsPbIBr2 counterpart shows an efficiency that is <30% of its initial value under the same test condition.

16.
ACS Chem Neurosci ; 13(12): 1727-1737, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35642309

RESUMEN

Inspired by the powerful capability of the biological olfactory system, we developed an in vivo bioelectronic nose based on a bioengineered rat by recording electrophysiological-responsive signals from the olfactory bulb with implanted multichannel microelectrodes. The bioengineered rat was prepared by overexpressing a selected olfactory receptor (OR3) on the rat olfactory epithelium, and multichannel electrophysiological signals were obtained from the mitral/tufted (M/T) cell population of the olfactory bulb. The classification of target multiodorants was realized by analyzing the redundant stimuli-responsive firing information. Ligand odorants induced significant firing changes with specific response patterns compared with nonligand odorants. The responsive curves were dependent on the concentration of target ligand odorants ranging from 10-6 to 10-3 M, and the detection limit was as low as 10-5 M. In addition, different ligand odorants were successfully discriminated via principal component analysis. This in vivo bioelectronic nose provides a novel approach for the detection of specific target odorants and has promising application potential in the field of rapid on-site odor discrimination.


Asunto(s)
Bulbo Olfatorio , Olfato , Animales , Ligandos , Microelectrodos , Odorantes/análisis , Ratas , Olfato/fisiología
17.
ACS Sens ; 7(7): 1791-1807, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35762514

RESUMEN

The light-addressable electrochemical sensor (LAES) is a recently emerged bioanalysis technique combining electrochemistry with the photoelectric effect in a semiconductor. In an LAES, a semiconductor substrate is illuminated locally to generate charge carriers in a well-defined area, thereby confining the electrochemical process to a target site. Benefiting from the unique light addressability, an LAES can not only detect multiple analytes in parallel within a single sensor plate but also act as a bio(chemical) imaging sensor to visualize the two-dimensional distribution of specific analytes. An LAES usually has three working modes: a potentiometric mode using light-addressable potentiometric sensors (LAPS) and an impedance mode using scanning photoinduced impedance microscopy (SPIM), while an amperometric mode refers to light-addressable electrochemistry (LAE) and photoelectrochemical (PEC) sensing. In this review, we describe the detection principles of each mode of LAESs and the concept of light addressability. In addition, we highlight the recent progress and advance of LAESs in spatial resolution, sensor system design, multiplexed detection, and bio(chemical) imaging applications. An outlook on current research challenges and future prospects is also presented.


Asunto(s)
Técnicas Biosensibles , Técnicas Biosensibles/métodos , Electroquímica , Potenciometría , Semiconductores
18.
Nanomaterials (Basel) ; 12(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35564214

RESUMEN

Saxitoxin (STX) is a highly toxic and widely distributed paralytic shellfish toxin (PSP), posing a serious hazard to the environment and human health. Thus, it is highly required to develop new STX detection approaches that are convenient, desirable, and affordable. This study presented a label-free electrolyte-insulator-semiconductor (EIS) sensor covered with a layer-by-layer developed positively charged Poly (amidoamine) (PAMAM) dendrimer. An aptamer (Apt), which is sensitive to STX was electrostatically immobilized onto the PAMAM dendrimer layer. This results in an Apt that is preferably flat inside a Debye length, resulting in less charge-screening effect and a higher sensor signal. Capacitance-voltage and constant-capacitance measurements were utilized to monitor each step of a sensor surface variation, namely, the immobilization of PAMAM dendrimers, Apt, and STX. Additionally, the surface morphology of PAMAM dendrimer layers was studied by using atomic force microscopy and scanning electron microscopy. Fluorescence microscopy was utilized to confirm that Apt was successfully immobilized on a PAMAM dendrimer-modified EIS sensor. The results presented an aptasensor with a detection range of 0.5-100 nM for STX detection and a limit of detection was 0.09 nM. Additionally, the aptasensor demonstrated high selectivity and 9-day stability. The extraction of mussel tissue indicated that an aptasensor may be applied to the detection of STX in real samples. An aptasensor enables marine toxin detection in a rapid and label-free manner.

19.
Biotechnol Bioeng ; 119(8): 2015-2030, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35441364

RESUMEN

Taste is one of the most basic and important sensations that is able to monitor the food quality and avoid intake of potential danger materials. Whether as an inevitable symptom of aging or a complication of cancer treatment, taste loss very seriously affects the patient's life quality. Taste bud organoids provide an alternative and convenient approach for the research of taste functions and the underlying mechanisms due to their characteristics of availability, strong maneuverability, and high similarity to the in-vivo taste buds. This review gives a systemic and comprehensive introduction to the preparation and application of taste bud organoids towards chemical sensing mechanisms. First, the basic structures and functions of taste buds will be briefly introduced. Then, the currently available approaches for the preparation of taste bud organoids are summarized and discussed, which are mainly divided into two categories, that is, the stem/progenitor cell-derived approach and the tissue-derived approach. Next, different applications of taste bud organoids in biomedicine are outlined based on their central roles such as disease modeling, biological sensing, gene regulation, and signal transduction. Finally, the current challenges, future development trends, and prospects of research in taste bud organoids are proposed and discussed.


Asunto(s)
Papilas Gustativas , Humanos , Organoides , Sensación , Células Madre/fisiología , Gusto/fisiología , Papilas Gustativas/fisiología
20.
Front Bioeng Biotechnol ; 10: 833481, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35265603

RESUMEN

The light-addressable potentiometric sensor (LAPS) is an electrochemical sensor based on the field-effect principle of semiconductors. It is able to sense the change of Nernst potential on the sensor surface, and the measuring area can be controlled by the illumination of a movable light. Due to the unique light-addressable ability of the LAPS, the chemical imaging system constructed with the LAPS can realize the two-dimensional image distribution detection of chemical/biomass. In this review, the advantages of the LAPS as a sensing unit of the microelectrochemical analysis system are summarized. Then, the most recent advances in the development of the LAPS analysis system are explained and discussed. In particular, this review focused on the research of ion diffusion, enzymatic reaction, microbial metabolism, and droplet microfluidics using the LAPS analysis system. Finally, the development trends and prospects of the LAPS analysis system are illustrated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA